286 research outputs found

    Why (and How) Networks Should Run Themselves

    Full text link
    The proliferation of networked devices, systems, and applications that we depend on every day makes managing networks more important than ever. The increasing security, availability, and performance demands of these applications suggest that these increasingly difficult network management problems be solved in real time, across a complex web of interacting protocols and systems. Alas, just as the importance of network management has increased, the network has grown so complex that it is seemingly unmanageable. In this new era, network management requires a fundamentally new approach. Instead of optimizations based on closed-form analysis of individual protocols, network operators need data-driven, machine-learning-based models of end-to-end and application performance based on high-level policy goals and a holistic view of the underlying components. Instead of anomaly detection algorithms that operate on offline analysis of network traces, operators need classification and detection algorithms that can make real-time, closed-loop decisions. Networks should learn to drive themselves. This paper explores this concept, discussing how we might attain this ambitious goal by more closely coupling measurement with real-time control and by relying on learning for inference and prediction about a networked application or system, as opposed to closed-form analysis of individual protocols

    Automatically Generating a Large, Culture-Specific Blocklist for China

    Full text link
    Internet censorship measurements rely on lists of websites to be tested, or "block lists" that are curated by third parties. Unfortunately, many of these lists are not public, and those that are tend to focus on a small group of topics, leaving other types of sites and services untested. To increase and diversify the set of sites on existing block lists, we use natural language processing and search engines to automatically discover a much wider range of websites that are censored in China. Using these techniques, we create a list of 1125 websites outside the Alexa Top 1,000 that cover Chinese politics, minority human rights organizations, oppressed religions, and more. Importantly, none of the sites we discover are present on the current largest block list\textit{none of the sites we discover are present on the current largest block list}. The list that we develop not only vastly expands the set of sites that current Internet measurement tools can test, but it also deepens our understanding of the nature of content that is censored in China. We have released both this new block list and the code for generating it

    A Developer-Friendly Library for Smart Home IoT Privacy-Preserving Traffic Obfuscation

    Full text link
    The number and variety of Internet-connected devices have grown enormously in the past few years, presenting new challenges to security and privacy. Research has shown that network adversaries can use traffic rate metadata from consumer IoT devices to infer sensitive user activities. Shaping traffic flows to fit distributions independent of user activities can protect privacy, but this approach has seen little adoption due to required developer effort and overhead bandwidth costs. Here, we present a Python library for IoT developers to easily integrate privacy-preserving traffic shaping into their products. The library replaces standard networking functions with versions that automatically obfuscate device traffic patterns through a combination of payload padding, fragmentation, and randomized cover traffic. Our library successfully preserves user privacy and requires approximately 4 KB/s overhead bandwidth for IoT devices with low send rates or high latency tolerances. This overhead is reasonable given normal Internet speeds in American homes and is an improvement on the bandwidth requirements of existing solutions.Comment: 6 pages, 6 figure

    Machine Learning DDoS Detection for Consumer Internet of Things Devices

    Full text link
    An increasing number of Internet of Things (IoT) devices are connecting to the Internet, yet many of these devices are fundamentally insecure, exposing the Internet to a variety of attacks. Botnets such as Mirai have used insecure consumer IoT devices to conduct distributed denial of service (DDoS) attacks on critical Internet infrastructure. This motivates the development of new techniques to automatically detect consumer IoT attack traffic. In this paper, we demonstrate that using IoT-specific network behaviors (e.g. limited number of endpoints and regular time intervals between packets) to inform feature selection can result in high accuracy DDoS detection in IoT network traffic with a variety of machine learning algorithms, including neural networks. These results indicate that home gateway routers or other network middleboxes could automatically detect local IoT device sources of DDoS attacks using low-cost machine learning algorithms and traffic data that is flow-based and protocol-agnostic.Comment: 7 pages, 3 figures, 3 tables, appears in the 2018 Workshop on Deep Learning and Security (DLS '18

    Evaluating the Contextual Integrity of Privacy Regulation: Parents' IoT Toy Privacy Norms Versus COPPA

    Full text link
    Increased concern about data privacy has prompted new and updated data protection regulations worldwide. However, there has been no rigorous way to test whether the practices mandated by these regulations actually align with the privacy norms of affected populations. Here, we demonstrate that surveys based on the theory of contextual integrity provide a quantifiable and scalable method for measuring the conformity of specific regulatory provisions to privacy norms. We apply this method to the U.S. Children's Online Privacy Protection Act (COPPA), surveying 195 parents and providing the first data that COPPA's mandates generally align with parents' privacy expectations for Internet-connected "smart" children's toys. Nevertheless, variations in the acceptability of data collection across specific smart toys, information types, parent ages, and other conditions emphasize the importance of detailed contextual factors to privacy norms, which may not be adequately captured by COPPA.Comment: 18 pages, 1 table, 4 figures, 2 appendice
    corecore